

Advanced Circuit Materials

Preliminary

Data Sheet 8080LP11

R/flex[®] 8080LP11 Liquid Photoimageable Covercoat

With recent increases in the demand and requirements for high-density circuitry and high-density multilayer circuitry in printed-circuit boards, fine-pattern circuit technology is now required for flexible printed-circuit boards.

R/flex[®] 8080 Liquid Photoimageable Covercoat, an alkaline-developable solder mask, responds to the requirements of high reliability and mass production characteristics for high-density flexible printed-circuit boards now required by the industry.

Introduction

Features

- (1) R/flex 8080LP11 is an alkaline-developable liquid photoimageable solder mask developed for flexible circuit boards. This product can achieve fine patterns not attainable by conventional screen printing.
- (2) Since this is a liquid mask that is contact-photoexposed, it can form a high-precision pattern as an insulation and solder resist for Flexible Printed Circuits (FPCs) that are required to have fine, high-density patterns.
- (3) R/flex 8080LP11 has a long shelf life/pot life and excellent stability in processing operations.
- (4) R/flex 8080LP11 has excellent adhesion, heat resistance and electrical insulation properties.
- (5) R/flex 8080LP11 also exhibits excellent plating resistance to all plating including electroless Ni and Au plating.
- (6) R/flex 8080LP11 is formulated to be compliant with IEC and JPCA halogen-free requirements

Ink Specifications

Property		Typical Values*	Remarks
color and state	color and state base		
	hardener	white paste	
mixing ratio		base 100g/hardner 46g	
nonvolatile component	1	73 weight %	1 hr/130°C (266°F) in a dryer
specific gravity	base	1.2	specific gravity cup method
	hardener	1.2	at 25°C (77°F)
viscosity		200 to 240 ps	Viscotester-VT-04 (25°C/77°F)
thixotropy index	1	1.5 to 2.2	brookfield HBT (n5/n50)
shelf life]	90 days	storage at 25°C (77°F)
pot life]	about 3 days	after mixing (25°C/77°F)

*Typical values are representation of an average value for the population of the property. For specification values contact Rogers Corporation

The information contained in this data sheet and processing guide is intended to assist you in designing with Rogers' circuit materials and prepreg. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet and processing guide will be achieved by a user for a particular purpose. The user is responsible for determining the suitability of Rogers' circuit materials and prepreg for each application. The world runs better with Rogers.[®]

Directions for Use

(1)	Mixing the hardener:		Mix at a ratio of 1 part resin to 0.46 parts hardener. Mix thoroughly. Allow mixture to stand at least 30 minutes after mixing for the viscosity to stabilize.			
(2)	Screen printing:			ster screen is recommended. The optimal post-drying coat- uctors is 15 to 20µm (0.0006'' to 0.0008'').		
Note:	Dilution:	avoid	ed as much as pos	at the edges of the circuit pattern and therefore should be ssible. (When dilution is unavoidable, use a solvent consisting Petroleum Naptha in a 2:1 ratio).		
(3)	Drying:	Stand a)	ard conditions For simultaneous p first side: second side:	photoexposure of both sides (convection oven) 75°C (167°F), 20 minutes or 80°C (176°F), 15 minutes 75°C (167°F), 30 minutes or		
Nete	Characteristic as a stitution as a sec	b)		80°C (176°F), 25 minutes e of a single side (convection oven) 75°C (167°F), 30 minutes or 80°C (176°F), 25 minutes		
Note.	Signagia Conditions are	uescri	ibea ior a post-aryi	ng film thickness of 15 to 20µm (0.0006" to 0.0008") over the		

Note. Standard conditions are described for a post-drying film thickness of 15 to 20µm (0.0006" to 0.0008") over the conductors; however, one should be aware that the drying efficiency varies significantly as a function of the conductor thickness and conductor density as this impacts overall film thickness.

The maximum allowable drying conditions are 75 minutes at 75°C (167°F) or 60 minutes at 80°C (176°F). Conditions more severe than this cause poor strippability during development.

(4)	Cooling:	The board should be cooled to room temperature before photo exposure.			
(5)	Photoexposure:	Standard condition is 500 mJ/cm ² (effective value through polyester film or glass).			
			will use a 7 kW metal halide lamp. While an ultrahigh- e used, the use of such a lamp may require stronger		
(6)	Development:	Development should be carrie sodium carbonate (Na ₂ CO ₃) c a spray pressure of 1.5 to 2.5 k	It in the range of 400 to 700 mJ/cm ² . Ed out using a 1.0 to 1.5 weight % aqueous solution of at a solution temperature of at least 30°C (86°F) using g/cm ² for at least er rinse for at least 60 seconds.		
		standard conditions developing solution: solution temperature: spray pressure: developing time: water rinse duration:	1 wt % aqueous Na ₂ CO ₃ solution 30°C (86°F) 2 kg/cm ² 60 seconds 60 seconds		
(7)	Final cure:	Curing should be carried out in at least 30 minutes.	n a convection oven at 150 to 160°C (302 to 320°F) for		
		standard conditions 150°C (302°F), 30 minutes			

Note: When flexibility is a particularly important issue:

- 1. Avoid unnecessary exposure to UV
- 2. Avoid long curing times (total not to exceed 60 minutes)

The information contained in this data sheet and processing guide is intended to assist you in designing with Rogers' circuit materials and prepreg. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet and processing guide will be achieved by a user for a particular purpose. The user is responsible for determining the suitability of Rogers' circuit materials and prepreg for each application.

Remarks

Flexible circuit handling

• The mask is fragile until thermally cured. Exercise care when handling parts.

Board rework

- After printing: Remove with developing solution after drying.
- After drying: Remove with developing solution.
- After exposure Strippable by dipping in 5% NaOH, 50 to 60°C (122 to 140°F), for at least 5 minutes. However, the stripping conditions can
 - vary as a function of the film thickness, exposure dose, etc.

Note: Since alkali will remain on the board after removal, the board should be subjected to another pretreatment (acid treatment, scrubbing).

Operating conditions

- Always work in a clean room under yellow illumination
- Temperature = 22 to 26°C (72 to 79°F)
- Humidity = 50 to 60%

Transporting

• For D.O.T. purposes this material falls under Hazardous Material Class 3 flammable liquid and should be handled in conformity with the corresponding laws and regulations.

Storage

- A designated area should be established and the product should be stored in a cool, dark place with good ventilation and without exposure to direct sunlight. The recommended storage temperature is 5 to 25°C (41 to 77°F).
- In the case of storage at low temperatures, for example, under refrigeration, the product should be held at room temperature for one day prior to use to prevent moisture condensation on the product.
- The working area should be well ventilated. A local ventilator is required since the product contains an organic solvent.
- Protective clothing such as gloves and an apron should be worn when handling the product in order to avoid contact with the skin. In the event of contact with the skin, wash with soapy water.
- Wash hands and face after handling.

Pot Life (Developability and Change in Viscosity after Hardener Addition)

abbrevations used in the table: CD = complete development - ID = incomplete development

	Initially after mixing	1 day	2 days	3 days	4 days	5 days
viscosity (25°C/77°F)	210 P	230 P	240 P	240 P	240 P	250 P
*developability drying conditions						
80°C/176°F/30 minutes	CD	CD	CD	CD	CD	CD
80°C/176°F/40 minutes	CD	CD	CD	CD	CD	CD
80°C/176°F/50 minutes	CD	CD	CD	CD	CD	CD
80°C/176°F/60 minutes	CD	CD	CD	CD	CD	CD
80°C/176°F/70 minutes	CD	CD	CD	CD	CD	ID
80°C/176°F/80 minutes	CD	CD	CD	ID	ID	ID
80°C/176°F/90 minutes	ID	ID	ID	ID	ID	ID

Note: Standing at 25°C (77°F) after mixing.

The developability declines with elapsed time after mixing as reported above. Although use is possible up to 5 days for drying conditions of 80°C/176°F/60 minutes, a pot life of 2 days is specified in order to provide a safety factor.

Developability: Screen printing to post-drying thickness of approximately 15µm (0.0006") after drying. Drying: development with 1% aqueous sodium carbonate solutions at 30°C (86°F) for one minute.

The information contained in this data sheet and processing guide is intended to assist you in designing with Rogers' circuit materials and prepreg. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet and processing guide will be achieved by a user for a particular purpose. The user is responsible for determining the suitability of Rogers' circuit materials and prepreg for each application.

*Drying Temperature and Developability

abbreviations used in the table: CD = complete development - ID = Incomplete development

Temperature	75°C/167°F	80°C/176°F	85°C/185°F	90°C/194°F
drying time				
30 minutes	CD	CD	CD	CD
40 minutes	CD	CD	CD	ID
50 minutes	CD	CD	CD	ID
60 minutes	CD	CD	ID	ID
70 minutes	CD	CD	ID	ID
80 minutes	CD	CD	ID	ID
90	CD	ID	ID	ID

*Screen printed to a thickness of approximately 15µm (0.0006") after drying. Developmed with 1% aqueous sodium carbonate solution at 30°C (86°F) for one minute.

*Post-Coating Developability

abbreviations used in the table: CD = complete development - ID = Incomplete development

	Immediately after coating	1 day	2 days	3 days
drying conditions				
80°C/176°F/30 minutes	CD	CD	CD	CD
80°C/176°F/40 minutes	CD	CD	CD	CD
80°C/176°F/50 minutes	CD	CD	CD	CD
80°C/176°F/60 minutes	CD	CD	CD	CD
80°C/176°F/70 minutes	CD	CD	CD	ID
80°C/176°F/80 minutes	CD	CD	CD	ID
80°C/176°F/90 minutes	ID	ID	ID	ID

Product should be kept at minimal light at 25°C (77°F) after coating. The developing declines with elapsed time after coating as reported above. The developability is stable up to the **second day post-coating**. Screen printed to a thickness of approximately 15mm (0.0006") after drying. Developmed with 1% aqueous sodium carbonate solution at 30°C (86°F) for one minute.

1-1 Physical Properties of the Film

Property	Typical Value*	Measurement Method
surface hardness (on Cu)	5H	JIS K 5400 or ASTM equiv.
adherence (on Cu)	100/100	JIS D 0202 or ASTM equiv.
soldering heat resistance (on Cu)	pass: 5 sec. x 2 cycles	260°C/500°F (rosin-based flux)
flex resistance	500 cycles	MIT Tester / 0.35mm dia.
boiling test	1 hour, no abnormalities	
solvent resistance		
Chlorothene	30 min. dipping: no abnormalities	dipping at 25°C (77°F)
Triclene	30 min. dipping: no abnormalities	dipping at 25°C (77°F)
IPA	30 min. dipping: no abnormalities	dipping at 25°C (77°F)
methylene chloride	10 min. dipping: no abnormalities	dipping at 25°C (77°F)
chemical resistance		
10% H ₂ SO ₄	30 min. dipping: no abnormalities	dipping at 25°C (77°F)
10% HCI	30 min. dipping: no abnormalities	dipping at 25°C (77°F)
5% NaOH	30 min. dipping: no abnormalities	dipping at 25°C (77°F)
flammability	94V-0 (on 94V-0 substrates	UL94

*Typical values are representation of an average value for the population of the property. For specification values contact Rogers Corporation

The information contained in this data sheet and processing guide is intended to assist you in designing with Rogers' circuit materials and prepreg. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet and processing guide will be achieved by a user for a particular purpose. The user is responsible for determining the suitability of Rogers' circuit materials and prepreg for each application.

1-2 Physical Properties of the Film: Plating Resistance

Type of Plating	Conditions	Results	Manufacturer	Product Name
electrolytic Ni	15 A/dm², 50°C(122°F), 15 min	no abnormalities	Nippon Schering	
electrolytic Au	0.8 A/dm ² , 50°C(122°F), 8 min	no abnormalities	Nippon Schering	
electroless Sn	70°C (158°F), pH = 0.9, 5 min	no abnormalities	Uemura Kogyo	Beamstarner ELT812
electroless Ni	85°C (185°F), pH = 5.1, 15 min	no abnormalities	Okuno Seiyaku	ICP Nikolon
electroless Au	90°C (194°F), pH = 5.8, 15 min	no abnormalities	Okuno Seiyaku	OPC MudenGold

Conditions for test board fabrication:

IPC-B-25 test boards were used; $80^{\circ}C(176^{\circ}F)/25 \text{ min drying} - 500 \text{ mJ/cm}^2 \text{ exposure} - 30^{\circ}C(86^{\circ}F)/1 \text{ min.}$ development - 150^{\circ}C(302^{\circ}F) /30 min. curing.

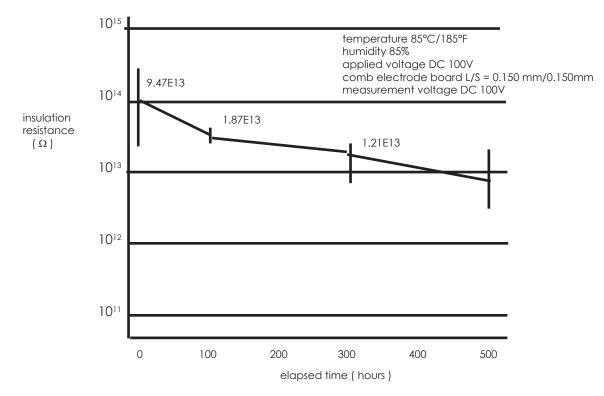
1-3 Physical Properties of the Film

Property	Characteristic Value	Measurement Method
glass-transition temperature	90°C (194°F)	thermal analysis (TMA)
thermal decomposition temperature		thermal analysis (TGA) 5% wt loss
specific gravity of coating (23°C/73°F)	1.37	JIS K 7112, method C or ASTM equiv. (flotation method)
Water absorption water immersion, 24 hr/23°C/73°F 4 hr/85%/85°C/185°F	1.29% 0.73%	JIS K 6911 (film thickness - 60 μm) or ASTM equiv.

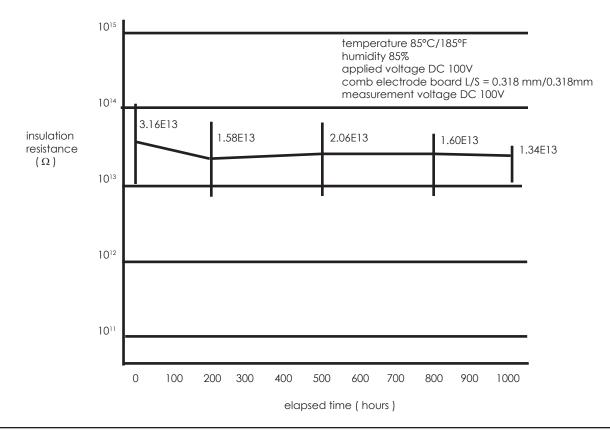
2 Physical Properties of the Film: Properties according to IPC 840B (Selected)

Test	Test Conditions	Results
hydrolytic stability/aging stability 3.6.2	no deterioration for: Class 1: 25°C/95°F/90% RH, 4 days Class 2: 85°C/185°F/90% RH, 7 days Class 3: 97°C/207°F/90% RH, 28 days	Class 1: pass Class 2: pass Class 3: pass
flammability 3.6.3	The UL94V laminate board number should not increase by more than 1.	UL94V-0
dielectric strength 3.8.1	The breakdown voltage must be at least 500 V/mil	700 V/mil
insulation resistance 3.8.2	pattern B or E, both bofre and after soldering. $\geq 5X10^{8}\Omega$ (before soldering) $\geq 5X10^{8}\Omega$ (after soldering)	Class 3: pass ≥ 1.0X10 ¹³ Ω 2.5X10 ¹² Ω
moisture and insulation resistance 3.9.1	Class 3: 25°C to 65°C/90% RH (77 to 149°F) DC100 V 7 days pattern B or E $\geq 5 X 10^8 \Omega$	Class 3: Pass 1.8X10 ¹² Ω

The information contained in this data sheet and processing guide is intended to assist you in designing with Rogers' circuit materials and prepreg. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet and processing guide will be achieved by a user for a particular purpose. The user is responsible for determining the suitability of Rogers' circuit materials and prepreg for each application.

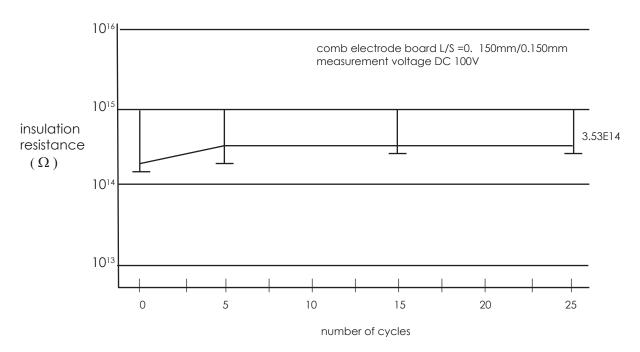

3 Properties of the Film according to IPC-SM-840B

Item No.	Item	Test Method	Requirements	Test Results
3.4.7	appearance	visual evaluation using 1.75X - 10X magnifying glass	absence of foreign a material, cracks, peeling, requirements roughness	satisfies
3.5.2.1	adherence	tape peel method	$Cu \ge 0\%$ Ni/Au \ge 5% board \ge 0% solder, etc. ≥ 10%	satisfies requirements
3.5.3	cutting machin- ability	no abnormalities when processed using conventional processing equipment	no blistering or peeling	satisfies requirements
3.5.1.2	abrasion resistance	pencil method	no scratching with a pencil softer than F	satisfies requirements
3.4.4	cure	3.6.1 Solvent resistance and flux resis- tance 3.7.1 Solderability and solder resistance 3.7.2 Soldering and desoldering test	satisfies the requirements of 3.6.1, 3.7.1, 3.7.2	satisfies requirements
3.6.1	solvent resistance- cleaner resistance flux resistance	IPA, 1,1,1-trichloroethane room temperaturedry for 10 minutes at ambient temperature after blistering, peeling, or discu ation2 minutes; no trichlorotrifluoroethane vapor-phase degreasing boiling 10% alkaline cleaner 57 ± 2°C (135 ± 36°F) 40% alkanolamine 20% 2-butoxyethanol 29% glycol ether + water 90% pH - 13dry for 10 minutes at ambient temperature after blistering, peeling, or discu ation		satisfies requirements
3.6.3	flammability	UL standard	the UL94 V number of the board should not be increased by more than 1	UL94 V-0
3.7.1	solderability	after flux application, standing for 5 minutes at ambient temperature , and preheat, 260 ± 5°C (500 ± 9°F) / 10 sec. floation	uncoated metal regions are perfectly soldered	satisfies requirements
3.7.2	solder resistance	after flux application, standing for 5 minutes at ambient temperature, and preheat, 260 ± 5°C(500 ± 9°F) /10 sec. floation	no abnormalities in the solder mask using the appearance evaluation of 3.4.7	satisfies requirements
3.7.3	solder attachment and stripping	2 cycles of solder attachment with a soldering iron and stripping 2 to 3 seconds	the solder mask does not peel from the substrate or conductors	satisfies requirements
3.6.2	hydrolic stability aging stability	Class 1, 35°C (95°F) /90%RH/4 days Class 2, 85°C (185°F) /90%RH/7 days Class 3, 97°C (207°F) 90%RH/28 days	no degradation	meets Class 1 meets Class 2 meets Class 3
3.8.1	dielectric strength	electrode (2 inch diameter, 1/4 inch radius) 500V/sec. voltage rise	≥ 500 V/mil	700 V/mil
3.8.2	insulation resistance	pattern B or pattern E, both before and after soldering	$\geq 5 \times 10^8 \Omega$	meets Class 3 2.5 x 10 ¹² Ω
3.9.1	humidity insulation resistance			meets Class 3 1.8 x 10 ¹² Ω
3.9.2	electromigration	85 ± 2°C (185 ± 4°F) / 90%RH, applied voltage = DC 10V, 7 days,pattern B or pattern E	no electromigration	meets requirements


The values reported above are based on experimental results and are not guaranteed.

The information contained in this data sheet and processing guide is intended to assist you in designing with Rogers' circuit materials and prepreg. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet and processing guide will be achieved by a user for a particular purpose. The user is responsible for determining the suitability of Rogers' circuit materials and prepreg for each application.

Electrical Insulation Characteristics - 1



Electrical Insulation Characteristics - 2

The information contained in this data sheet and processing guide is intended to assist you in designing with Rogers' circuit materials and prepreg. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet and processing guide will be achieved by a user for a particular purpose. The user is responsible for determining the suitability of Rogers' circuit materials and prepreg for each application.

Thermal Cycle Testing -50°C (-58°F) x +85°C (+185°F)

Electrical Insulation characteristics

Film Properties After Thermal Cycle Tests

	Number of C	Number of Cycles				
Property	0	5	15	25	Remarks	
film appearance	-	no abnormalities	no abnormalities	no abnormalities	visual inspection	
hardness (on Cu)	5H	5H	5H	5H	*JIS K 5400	
adherence (on Cu)	10 points	10 points	10 points	10 points	*JIS K 5400	
adherence (on Kapton 100H)	10 points	10 points	10 points	10 points	*JIS K 5400	
solder heat resistance	passes	passes	passes	passes	260°C/500°F, 5 sec x 2 times	
flexiblility (on Kapton 100H)	no cracking	no cracking	no cracking	no cracking	1 time at cracking	

* or ASTM equiv.

Typical values are representation of an average value for the population of the property. For specification values contact Rogers Corporation.

The information in this data sheet is intended to assist you in fabricating Rogers' circuit material laminates. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit material laminates for each application.

These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited.

R/flex is a licensed trademarks of Rogers Corporation © 2007, 2008 Rogers Corporation, Printed in U.S.A., All rights reserved. Revised June 2008 -0608-0.5CC Publication #14-307