
84N

Polyimide Laminate and Prepreg

84N is a high performance ceramic-filled polyimide prepreg based on Arlon's 85N pure polyimide system, designed for use in filling etched areas in polyimide multilayers that contain thick copper layers and for filling clearance holes in metal cores. The ceramic filler in the resin serves to reduce shrinkage and inhibit crack formulation during through-hole drilling in filled clearance areas.

Features:

- High Tg polyimide (>250°C) with Thermal Decomposition temperature (Td) >400°C and T300>60 minutes
- Low z-expansion of 1% between 50-250°C offers superior PTH reliability through manufacture, assembly and in-service
- Decomposition temperature of 407°C, compared with 300-360°C for typical high-performance epoxies, offering outstanding longterm high-temperature performance
- Up to 50% or more reduction in cure time compared with traditional polyimide cycles
- Electrical and mechanical properties meeting the requirements of IPC-4101/40 and /41
- Toughened, Non-MDA chemistry resists drill cracking
- Halogen-free chemistry
- Compatible with lead-free processing
- RoHS/WEEE compliant

Typical Applications:

- MLB's that are designed with clearance holes in metal cores or for thick metal power and ground planes that require the thermal stability of polyimide
- Applications requiring significant lifetimes at elevated temperatures, such as aircraft engine instrumentation, down hole drilling, under-hood automotive applications industrial sensor systems and burn-in testing of IC's.

Typical Properties:

Property	Units	Value	Test Method
1. Electrical Properties			
Dielectric Constant (may vary with Resin %)			
@ 1 MHz	-	4.2	IPC TM-650 2.5.5.3
@ 1 GHz	-		IPC TM-650 2.5.5.9
Dissipation Factor			
@ 1 MHz	-	0.01	IPC TM-650 2.5.5.3
@ 1 GHz	-		IPC TM-650 2.5.5.9
Volume Resistivity			
C96/35/90	MΩ-cm	1.5 x 10 ⁸	IPC TM-650 2.5.17.1
E24/125	MΩ-cm	3.0 x 10 ⁸	IPC TM-650 2.5.17.1
Surface Resistivity			
C96/35/90	$M\Omega$	1.6 x 10 ⁹	IPC TM-650 2.5.17.1
E24/125	$M\Omega$	1.6 x 10 ⁹	IPC TM-650 2.5.17.1
Electrical Strength	Volts/mil (kV/mm)	1200 (39.3)	IPC TM-650 2.5.6.2
Dielectric Breakdown	kV		IPC TM-650 2.5.6
Arc Resistance	sec	140	IPC TM-650 2.5.1
2. Thermal Properties			
Glass Transition Temperature (Tg)			
TMA	°C	250	IPC TM-650 2.4.24
DSC	°C		IPC TM-650 2.4.25
Decomposition Temperature (Td)			
Initial	°C	387	IPC TM-650 2.3.41
5%	°C	407	IPC TM-650 2.3.41
T260	min	>60	IPC TM-650 2.4.24.1
T288	min	>60	IPC TM-650 2.4.24.1
T300	min	>60	IPC TM-650 2.4.24.1
CTE (x,y)	ppm/°C	14-16	IPC TM-650 2.4.41
CTE (z)			
< Tg	ppm/°C	48	IPC TM-650 2.4.24
> Tg	ppm/°C	150	IPC TM-650 2.4.24
z-axis Expansion (50-260°C)	%	1.0	IPC TM-650 2.4.24
3. Mechanical Properties			
Peel Strength to Copper (1 oz/35 micron)			
After Thermal Stress	lb/in (N/mm)	7.1 (1.2)	IPC TM-650 2.4.8
At Elevated Temperatures	lb/in (N/mm)	7.1 (1.2)	IPC TM-650 2.4.8.2
After Process Solutions	lb/in (N/mm)	7.1 (1.2)	IPC TM-650 2.4.8
Young's Modulus	Mpsi (GPa)	3.0	IPC TM-650 2.4.18.3
Flexural Strength			
Tensile Strength			
Compressive Modulus			
Poisson's Ratio (x, y)	-	0.15	ASTM D-3039
4. Physical Properties			
Water Absorption	%	0.3	IPC TM-650 2.6.2.1
Specific Gravity	g/cm ³	1.65	ASTM D792 Method A
Thermal Conductivity	W/mK	0.25	ASTM E1461
Flammability	class	НВ	UL-94

Availability:

Arlon Part Number	Glass Style	Resin %	Resin Flow	Filler Solids	Pressed Thickness
84N0675-HF	106	75	50 ± 3%	28% Nominal	0.0014"
84N0680-HF	106	80	50 ± 3%	28% Nominal	0.0015"

Recommended Process Conditions:

84N is recommended for etched areas in copper layers and clearance holes, and the high resin flow on the 84N is designed to flow readily into the holes. The nominal pressed thickness of the glass plus resin that will be left after flow-out into the holes may vary depending on the density of holes to be filled. It is recommended that to ensure maximum effectiveness of the hole-filling process, at least two plies of 84N be used on each side of the material to be filled (more may be needed for thicker systems), backed up by a single ply of standard 85N 1080 or 106 to serve as a hydraulic medium to drive the filled resin into clearance and via holes.

NOTE: the 84N0675HF grade has reduced resin content to provide a lower pressed thickness. Customer should use the 84N0680HF grade for most applications as the lower resin grade may be marginal in hole fill for many applications.

Lamination Cycle:

- 1) Pre-vacuum for 30 45 minutes.
- 2) Control the heat rise to 8°F 12°F (4°C 6°C) per minute between 150°F and 250°F (65°C and 121°C). Vacuum lamination is preferred. Start point vacuum lamination pressures are shown in the table below:

Panel	Size	Pressure		Pressure / 29" Vacuum	
in	cm	psi	kg/sq cm	psi	kg/cm²
12 x 18	40 x 46	275	19	200	14.0
16 x 18	30 x 46	350	25	250	17.5
18 x 24	46 x 61	400	28	300	21.0

Product temperature at start of cure = 425°F (218°C)

- 3) Cure time at temperature = 2.0 hours
- 4) Cool down under pressure at ≤ 10°F/min (5°C/min)

Drill as for normal polyimide process.

De-smear using alkaline permanganate or plasma with settings appropriate for polyimide; plasma is preferred for positive etchback

Conventional plating processes are compatible with 84N

Standard profiling parameters may be used; chip breaker style router bits are not recommended

Bake for 1 - 2 hours at 250°F (121°C) prior to solder to reflow of HASL

North America:

9433 Hyssop Drive, Rancho Cucamonga, California 91730 Tel: (909) 987-9533 • Fax: (909) 987-8541

1100 Governor Lea Road, Bear, Delaware, 19701 Tel: (302) 834-2100, (800) 635-9333 Fax: (302) 834-2574

Northern Europe:

44 Wilby Avenue, Little Lever, Bolton, Lancaster, BL31QE, UK Tel/Fax: [44] 120-457-6068

Southern Europe:

1 Bis Rue de la Remarde, 91530 Saint Cheron, France Tel: (33) 871-096-082 • Fax: (33) 164-566-489

Arlon Material Technologies

No. 20 Datong Road, Export Processing Zone, Suzhou New & High District, Jiangsu, China Tel (86) 512-6269-6966 Fax: (86) 512-6269-6038

Arlon Electronic Materials (Suzhou) Co., Ltd.

Building 7, Da Xing Industrial Park of Suzhou New & High District Jinangsu, China 21500 Tel: (86) 512-6672-1698 Fax: (86) 512-6672-1697

Eastern China:

Room 11/401, No. 8, Hong Gu Road, Shanghai, China, 200336 Tel/Fax: [86] 21-6209-0202

Southern China:

Room 601, Unit 1, Building 6, Liyuanxincun, Road Holiday, Hua qiaocheng, Nanshan District, Shenzhen City, China Tel: (86) 755-26906612 • Fax: (86) 755-26921357